Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.078
Filtrar
1.
Crit Rev Eukaryot Gene Expr ; 34(4): 45-54, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38505872

RESUMO

HDAC1 functions as an oncogene in multi-type cancers. This study aimed to investigate the roles of histone deacetylase 1 (HDAC1) in cervical cancer (CC). mRNA expression was determined using reverse transcription quantitative polymerase chain reaction. The protein-protein complexes was analyzed using co-immunoprecipitation assay. The binding sites between NRF2 and NEU1 were confirmed by chromatin immunoprecipitation assay. Cell viability was detected by CCK-8. Cell proliferation was measured using CCK-8 and colony formation assays. Cell migrative and invasive ability were determined using transwell assay. We found that HDAC1 was upregulated in CC patients and cells. Trichostatin A (TSA) treatment decreased the number of colonies and migrated and invaded cells. Moreover, HDAC1 interacted with NRF2 to downregulate NEU1 expression. NEU1 knockdown attenuated the effects of TSA and enhanced the aggressiveness of CC cells. In conclusion, HDAC1 functions as an oncogene in CC. Targeting HDAC1 may be an alternative strategy for CC.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Regulação para Baixo , Neoplasias do Colo do Útero/genética , Histona Desacetilase 1/genética , Histona Desacetilase 1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Sincalida/genética , Sincalida/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo
2.
Cells ; 13(6)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534324

RESUMO

Understanding the role of biased G protein-coupled receptor (GPCR) agonism in receptor signaling may provide novel insights into the opposing effects mediated by cannabinoids, particularly in cancer and cancer metastasis. GPCRs can have more than one active state, a phenomenon called either 'biased agonism', 'functional selectivity', or 'ligand-directed signaling'. However, there are increasing arrays of cannabinoid allosteric ligands with different degrees of modulation, called 'biased modulation', that can vary dramatically in a probe- and pathway-specific manner, not from simple differences in orthosteric ligand efficacy or stimulus-response coupling. Here, emerging evidence proposes the involvement of CB1 GPCRs in a novel biased GPCR signaling paradigm involving the crosstalk between neuraminidase-1 (Neu-1) and matrix metalloproteinase-9 (MMP-9) in the activation of glycosylated receptors through the modification of the receptor glycosylation state. The study findings highlighted the role of CB1 agonists AM-404, Aravnil, and Olvanil in significantly inducing Neu-1 sialidase activity in a dose-dependent fashion in RAW-Blue, PANC-1, and SW-620 cells. This approach was further substantiated by findings that the neuromedin B receptor inhibitor, BIM-23127, MMP-9 inhibitor, MMP9i, and Neu-1 inhibitor, oseltamivir phosphate, could specifically block CB1 agonist-induced Neu-1 sialidase activity. Additionally, we found that CB1 receptors exist in a multimeric receptor complex with Neu-1 in naïve, unstimulated RAW-Blue, PANC-1, and SW-620 cells. This complex implies a molecular link that regulates the interaction and signaling mechanism among these molecules present on the cell surface. Moreover, the study results demonstrate that CB1 agonists induce NFκB-dependent secretory alkaline phosphatase (SEAP) activity in influencing the expression of epithelial-mesenchymal markers, E-cadherin, and vimentin in SW-620 cells, albeit the impact on E-cadherin expression is less pronounced compared to vimentin. In essence, this innovative research begins to elucidate an entirely new molecular mechanism involving a GPCR signaling paradigm in which cannabinoids, as epigenetic stimuli, may traverse to influence gene expression and contribute to cancer and cancer metastasis.


Assuntos
Canabinoides , Neoplasias , Agonistas de Receptores de Canabinoides/farmacologia , Metaloproteinase 9 da Matriz/metabolismo , Vimentina/metabolismo , Ligantes , Glicosilação , Neuraminidase/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Canabinoides/farmacologia , Transição Epitelial-Mesenquimal , Caderinas/metabolismo
3.
Viruses ; 16(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38543754

RESUMO

The H274Y substitution (N2 numbering) in neuraminidase (NA) N1 confers oseltamivir resistance to A(H1N1) influenza viruses. This resistance has been associated with reduced N1 expression using transfected cells, but the effect of this substitution on the enzymatic properties and on the expression of other group-1-NA subtypes is unknown. The aim of the present study was to evaluate the antiviral resistance, enzymatic properties, and expression of wild-type (WT) and H274Y-substituted NA for each group-1-NA. To this end, viruses with WT or H274Y-substituted NA (N1pdm09 or avian N4, N5 or N8) were generated by reverse genetics, and for each reverse-genetic virus, antiviral susceptibility, NA affinity (Km), and maximum velocity (Vm) were measured. The enzymatic properties were coupled with NA quantification on concentrated reverse genetic viruses using mass spectrometry. The H274Y-NA substitution resulted in highly reduced inhibition by oseltamivir and normal inhibition by zanamivir and laninamivir. This resistance was associated with a reduced affinity for MUNANA substrate and a conserved Vm in all viruses. NA quantification was not significantly different between viruses carrying WT or H274Y-N1, N4 or N8, but was lower for viruses carrying H274Y-N5 compared to those carrying a WT-N5. In conclusion, the H274Y-NA substitution of different group-1-NAs systematically reduced their affinity for MUNANA substrate without a significant impact on NA Vm. The impact of the H274Y-NA substitution on viral NA expression was different according to the studied NA.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A , Influenza Humana , Humanos , Oseltamivir/farmacologia , Antivirais/farmacologia , Vírus da Influenza A/genética , Neuraminidase/genética , Neuraminidase/metabolismo , Vírus da Influenza A Subtipo H1N1/genética , Genética Reversa , Farmacorresistência Viral/genética , Substituição de Aminoácidos , Inibidores Enzimáticos/farmacologia
4.
Glycobiology ; 34(5)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489772

RESUMO

Polysialic acid (polySia) is a linear polymer of α2,8-linked sialic acid residues that is of fundamental biological interest due to its pivotal roles in the regulation of the nervous, immune, and reproductive systems in healthy human adults. PolySia is also dysregulated in several chronic diseases, including cancers and mental health disorders. However, the mechanisms underpinning polySia biology in health and disease remain largely unknown. The polySia-specific hydrolase, endoneuraminidase NF (EndoN), and the catalytically inactive polySia lectin EndoNDM, have been extensively used for studying polySia. However, EndoN is heat stable and remains associated with cells after washing. When studying polySia in systems with multiple polysialylated species, the residual EndoN that cannot be removed confounds data interpretation. We developed a strategy for site-specific immobilization of EndoN on streptavidin-coated magnetic beads. We showed that immobilizing EndoN allows for effective removal of the enzyme from samples, while retaining hydrolase activity. We used the same strategy to immobilize the polySia lectin EndoNDM, which enabled the enrichment of polysialylated proteins from complex mixtures such as serum for their identification via mass spectrometry. We used this methodology to identify a novel polysialylated protein, QSOX2, which is secreted from the breast cancer cell line MCF-7. This method of site-specific immobilization can be utilized for other enzymes and lectins to yield insight into glycobiology.


Assuntos
Neuraminidase , Ácidos Siálicos , Adulto , Humanos , Ácidos Siálicos/química , Neuraminidase/metabolismo , Lectinas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
5.
Cell Rep ; 43(3): 113962, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38483905

RESUMO

Pneumolysin (Ply) is an indispensable cholesterol-dependent cytolysin for pneumococcal infection. Although Ply-induced disruption of pneumococci-containing endosomal vesicles is a prerequisite for the evasion of endolysosomal bacterial clearance, its potent activity can be a double-edged sword, having a detrimental effect on bacterial survivability by inducing severe endosomal disruption, bactericidal autophagy, and scaffold epithelial cell death. Thus, Ply activity must be maintained at optimal levels. We develop a highly sensitive assay to monitor endosomal disruption using NanoBiT-Nanobody, which shows that the pneumococcal sialidase NanA can fine-tune Ply activity by trimming sialic acid from cell-membrane-bound glycans. In addition, oseltamivir, an influenza A virus sialidase inhibitor, promotes Ply-induced endosomal disruption and cytotoxicity by inhibiting NanA activity in vitro and greater tissue damage and bacterial clearance in vivo. Our findings provide a foundation for innovative therapeutic strategies for severe pneumococcal infections by exploiting the duality of Ply activity.


Assuntos
Neuraminidase , Infecções Pneumocócicas , Humanos , Neuraminidase/metabolismo , Streptococcus pneumoniae/metabolismo , Estreptolisinas/metabolismo , Proteínas de Bactérias/metabolismo
6.
Microb Pathog ; 190: 106628, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508422

RESUMO

Rotavirus infections in suckling and weaning piglets cause severe dehydration and death, resulting in significant economic losses in the pig breeding industry. With the continuous emergence of porcine rotavirus (PoRV) variants and poor vaccine cross-protection among various genotypes, there is an urgent need to develop alternative strategies such as seeking effective antiviral products from nature, microbial metabolites and virus-host protein interaction. Sialidases play a crucial role in various physiopathological processes and offer a promising target for developing antivirus drugs. However, the effect of bacterial-derived sialidases on the infection of PoRVs remains largely unknown. Herein, we investigated the impact of bacterial-derived sialidases (sialidase Cp and Vc) on PoRV strain OSU(Group A) infection, using differentiated epithelial monkey kidney cells (MA104) as a model. Our results indicated that the pretreatment of MA104 with exogenous sialidases effectively suppressed PoRV OSU in a concentration-dependent manner. Notably, even at a concentration of 0.01 µU/mL, sialidases significantly inhibited the virus (MOI = 0.01). Meanwhile, we found that sialidase Vc pretreatment sharply reduced the binding rate of PoRV OSU. Last, we demonstrated that PoRV OSU might recognize α-2,3-linked sialic acid as the primary attachment factor in MA104. Our findings provide new insights into the underlying mechanism of PoRV OSU infections, shedding lights on the development of alternative antivirus approaches based on bacteria-virus interaction.


Assuntos
Neuraminidase , Infecções por Rotavirus , Rotavirus , Replicação Viral , Animais , Neuraminidase/metabolismo , Neuraminidase/genética , Rotavirus/efeitos dos fármacos , Rotavirus/fisiologia , Suínos , Replicação Viral/efeitos dos fármacos , Linhagem Celular , Células Epiteliais/virologia , Células Epiteliais/microbiologia , Ligação Viral/efeitos dos fármacos , Ácido N-Acetilneuramínico/metabolismo , Ácido N-Acetilneuramínico/farmacologia , Antivirais/farmacologia , Haplorrinos , Doenças dos Suínos/virologia , Doenças dos Suínos/microbiologia
7.
Langmuir ; 40(14): 7471-7478, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38554266

RESUMO

Neuraminidases (NA) are sialic acid-cleaving enzymes that are used by both bacteria and viruses. These enzymes have sialoside structure-related binding and cleaving preferences. Differentiating between these enzymes requires using a large array of hard-to-access sialosides. In this work, we used electrochemical impedimetric biosensing to differentiate among several pathogene-related NAs. We used a limited set of sialosides and tailored the surface properties. Various sialosides were grafted on two different surfaces with unique properties. Electrografting on glassy carbon electrodes provided low-density sialoside-functionalized surfaces with a hydrophobic submonolayer. A two-step assembly on gold electrodes provided a denser sialoside layer on a negatively charged submonolayer. The synthesis of each sialoside required dozens of laborious steps. Utilizing the unique protein-electrode interaction modes resulted in richer biodata without increasing the synthetic load. These principles allowed for profiling NAs and determining the efficacy of various antiviral inhibitors.


Assuntos
Técnicas Biossensoriais , Ácidos Siálicos , Ácidos Siálicos/química , Neuraminidase/química , Neuraminidase/metabolismo , Ácido N-Acetilneuramínico/química , Bactérias
8.
Infect Immun ; 92(3): e0034423, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38376159

RESUMO

As one of the keystone pathogens of periodontitis, the oral bacterium Porphyromonas gingivalis produces an array of virulence factors, including a recently identified sialidase (PG0352). Our previous report involving loss-of-function studies indicated that PG0352 plays an important role in the pathophysiology of P. gingivalis. However, this report had not been corroborated by gain-of-function studies or substantiated in different P. gingivalis strains. To fill these gaps, herein we first confirm the role of PG0352 in cell surface structures (e.g., capsule) and serum resistance using P. gingivalis W83 strain through genetic complementation and then recapitulate these studies using P. gingivalis ATCC33277 strain. We further investigate the role of PG0352 and its counterpart (PGN1608) in ATCC33277 in cell growth, biofilm formation, neutrophil killing, cell invasion, and P. gingivalis-induced inflammation. Our results indicate that PG0352 and PGN1608 are implicated in P. gingivalis cell surface structures, hydrophobicity, biofilm formation, resistance to complement and neutrophil killing, and host immune responses. Possible molecular mechanisms involved are also discussed. In summary, this report underscores the importance of sialidases in the pathophysiology of P. gingivalis and opens an avenue to elucidate their underlying molecular mechanisms.


Assuntos
Periodontite , Porphyromonas gingivalis , Humanos , Virulência , Neuraminidase/genética , Neuraminidase/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Periodontite/microbiologia
9.
Ann Rheum Dis ; 83(5): 564-575, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38272667

RESUMO

OBJECTIVE: Erythropoietin (EPO) known as an erythrocyte-stimulating factor is increased in patients with rheumatoid arthritis (RA). Nevertheless, the function of EPO in the process of RA and relative mechanism needs to be further clarified. METHODS: The level of EPO in serum and synovial fluid from patients with RA and healthy controls was determined by . Collagen-induced arthritis (CIA) mice were constructed to confirm the role of EPO on RA pathogenesis. Differentially expressed genes (DEGs) of EPO-treated fibroblast-like synoviocyte (FLS) were screened by transcriptome sequencing. The transcription factor of neuraminidase 3 (NEU3) of DEGs was verified by double luciferase reporting experiment, DNA pulldown, electrophoretic mobility shift assay and chromatin immunoprecipitation-quantitative PCR (qPCR) assay. RESULTS: The overexpression of EPO was confirmed in patients with RA, which was positively associated with Disease Activity Score 28-joint count. Additionally, EPO intervention could significantly aggravate the joint destruction in CIA models. The upregulation of NEU3 was screened and verified by transcriptome sequencing and qPCR in EPO-treated FLS, and signal transducer and activator of transcription 5 was screened and verified to be the specific transcription factor of NEU3. EPO upregulates NEU3 expression via activating the Janus kinase 2 (JAK2)-STAT5 signalling pathway through its receptor EPOR, thereby to promote the desialylation through enhancing the migration and invasion ability of FLS, which is verified by JAK2 inhibitor and NEU3 inhibitor. CONCLUSION: EPO, as a proinflammatory factor, accelerates the process of RA through transcriptional upregulation of the expression of NEU3 by JAK2/STAT5 pathway.


Assuntos
Artrite Experimental , Artrite Reumatoide , Eritropoetina , Neuraminidase , Sinoviócitos , Animais , Humanos , Camundongos , Artrite Experimental/genética , Artrite Experimental/metabolismo , Artrite Reumatoide/genética , Artrite Reumatoide/metabolismo , Proliferação de Células , Células Cultivadas , Eritropoetina/metabolismo , Fibroblastos/metabolismo , Neuraminidase/metabolismo , Fator de Transcrição STAT5/metabolismo , Membrana Sinovial/metabolismo , Sinoviócitos/metabolismo
10.
J Virol ; 98(2): e0139823, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38179944

RESUMO

Antibodies are frontline defenders against influenza virus infection, providing protection through multiple complementary mechanisms. Although a subset of monoclonal antibodies (mAbs) has been shown to restrict replication at the level of virus assembly and release, it remains unclear how potent and pervasive this mechanism of protection is, due in part to the challenge of separating this effect from other aspects of antibody function. To address this question, we developed imaging-based assays to determine how effectively a broad range of mAbs against the IAV surface proteins can specifically restrict viral egress. We find that classically neutralizing antibodies against hemagglutinin are broadly multifunctional, inhibiting virus assembly and release at concentrations 1-20-fold higher than the concentrations at which they inhibit viral entry. These antibodies are also capable of altering the morphological features of shed virions, reducing the proportion of filamentous particles. We find that antibodies against neuraminidase and M2 also restrict viral egress and that inhibition by anti-neuraminidase mAbs is only partly attributable to a loss in enzymatic activity. In all cases, antigen crosslinking-either on the surface of the infected cell, between the viral and cell membrane, or both-plays a critical role in inhibition, and we are able to distinguish between these modes experimentally and through a structure-based computational model. Together, these results provide a framework for dissecting antibody multifunctionality that could help guide the development of improved therapeutic antibodies or vaccines and that can be extended to other viral families and antibody isotypes.IMPORTANCEAntibodies against influenza A virus provide multifaceted protection against infection. Although sensitive and quantitative assays are widely used to measure inhibition of viral attachment and entry, the ability of diverse antibodies to inhibit viral egress is less clear. We address this challenge by developing an imaging-based approach to measure antibody inhibition of virus release across a panel of monoclonal antibodies targeting the influenza A virus surface proteins. Using this approach, we find that inhibition of viral egress is common and can have similar potency to the ability of an antibody to inhibit viral entry. Insights into this understudied aspect of antibody function may help guide the development of improved countermeasures.


Assuntos
Anticorpos Monoclonais , Anticorpos Neutralizantes , Vírus da Influenza A , Influenza Humana , Montagem de Vírus , Humanos , Anticorpos Monoclonais/administração & dosagem , Anticorpos Neutralizantes/administração & dosagem , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A/efeitos dos fármacos , Vacinas contra Influenza , Influenza Humana/tratamento farmacológico , Influenza Humana/virologia , Proteínas de Membrana , Neuraminidase/metabolismo , Montagem de Vírus/efeitos dos fármacos
11.
Virol J ; 21(1): 7, 2024 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178138

RESUMO

BACKGROUND: Oncolytic viruses are being studied and developed as novel cancer treatments. Using directed evolution technology, structural modification of the viral surface protein increases the specificity of the oncolytic virus for a particular cancer cell. Newcastle disease virus (NDV) does not show specificity for certain types of cancer cells during infection; therefore, it has low cancer cell specificity. Hemagglutinin is an NDV receptor-binding protein on the cell surface that determines host cell tropism. NDV selectivity for specific cancer cells can be increased by artificial amino acid changes in hemagglutinin neuraminidase HN proteins via directed evolution, leading to improved therapeutic effects. METHODS: Sialic acid-binding sites (H domains) of the HN protein mutant library were generated using error-prone PCR. Variants of the H domain protein were screened by enzyme-linked immunosorbent assay using HCT 116 cancer cell surface molecules. The mutant S519G H domain protein showed the highest affinity for the surface protein of HCT 116 cells compared to that of different types of cancer cells. This showed that the S519G mutant H domain protein gene replaced the same part of the original HN protein gene, and S519G mutant recombinant NDV (rNDV) was constructed and recovered. S519G rNDV cancer cell killing effects were tested using the MTT assay with various cancer cell types, and the tumor suppression effect of the S519G mutant rNDV was tested in a xenograft mouse model implanted with cancer cells, including HCT 116 cells. RESULTS: S519G rNDV showed increased specificity and enhanced killing ability of HCT 116 cells among various cancer cells and a stronger suppressive effect on tumor growth than the original recombinant NDV. Directed evolution using an artificial amino acid change in the NDV HN (S519G mutant) protein increased its specificity and oncolytic effect in colorectal cancer without changing its virulence. CONCLUSION: These results provide a new methodology for the use of directed evolution technology for more effective oncolytic virus development.


Assuntos
Neoplasias Colorretais , Vírus Oncolíticos , Humanos , Animais , Camundongos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Proteína HN/genética , Proteína HN/metabolismo , Neuraminidase/genética , Neuraminidase/metabolismo , Hemaglutininas , Ácido N-Acetilneuramínico/metabolismo , Células HCT116 , Vírus Oncolíticos/genética , Modelos Animais de Doenças , Proteínas de Membrana , Neoplasias Colorretais/terapia
12.
ACS Appl Mater Interfaces ; 16(3): 3139-3146, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38197122

RESUMO

We report on the design of heteromultivalent influenza A virus (IAV) receptors based on reversible self-assembled monolayers (SAMs) featuring two distinct mobile ligands. The principal layer building blocks consist of α-(4-amidinophenoxy)alkanes decorated at the ω-position with sialic acid (SA) and the neuraminidase inhibitor Zanamivir (Zan), acting as two mobile ligands binding to the complementary receptors hemagglutinin (HA) and neuraminidase (NA) on the virus surface. From ternary amphiphile mixtures comprising these ligands, the amidines spontaneously self-assemble on top of carboxylic acid-terminated SAMs to form reversible mixed monolayers (rSAMs) that are easily tunable with respect to the ligand ratio. We show that this results in the ability to construct surfaces featuring a very strong affinity for the surface proteins and specific virus subtypes. Hence, an rSAM prepared from solutions containing 15% SA and 10% Zan showed an exceptionally high affinity and selectivity for the avian IAV H7N9 (Kd = 11 fM) that strongly exceeded the affinity for other subtypes (H3N2, H5N1, H1N1). Changing the SA/Zan ratio resulted in changes in the relative preference between the four tested subtypes, suggesting this to be a key parameter for rapid adjustments of both virus affinity and selectivity.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Subtipo H7N9 do Vírus da Influenza A , Vírus da Influenza A Subtipo H3N2/metabolismo , Neuraminidase/metabolismo , Ligantes , Ácido N-Acetilneuramínico/metabolismo
13.
Carbohydr Res ; 536: 109013, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185031

RESUMO

Neuraminic acid (Neu5Ac, also known as sialic acid) is an important monosaccharide found in glycoproteins and glycolipids which plays a vital role in regulation of physiological functions and pathological conditions. The study of sialoglycans has benefitted from the development of glycomimetic probes and inhibitors for proteins and enzymes that interact with and modify neuraminic acid in glycan chains. Methods to access sialoside intermediates with high yield are needed to facilitate the design of new targets. Here, we report the synthesis of C5-azido thiosialosides using a mild method to deprotect the C5-acetamido functional group followed by the use of a diazo-transfer reagent. We examined two diazo-transfer strategies and compared their yields and tolerance of acetate protecting groups. The same methods and comparisons were also performed for the 2,3-dehydro-5-N-acetylneuraminic acid (DANA) scaffold which is commonly used to generate inhibitors of neuraminidase (sialidase) enzymes. We found that C5-azido derivatives of both thiosialosides and DANA could be produced in five or six steps with yields up to 76 % and 83 %, respectively. Diazo-transfer reagents compared in this study were trifluoromethanesulfonyl azide (TfN3) and imidazole-1-sulfonyl azide (ImzSO2N3). We found that both reagents were compatible with this method and showed comparable yields. Finally, we show that C5-azido derivatives can help to avoid O, N-acyl protecting group migration which was observed in C5-NHAc analogs.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Neuramínicos , Neuraminidase/metabolismo , Ácidos Siálicos/farmacologia
14.
Am J Physiol Heart Circ Physiol ; 326(1): H270-H277, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37999645

RESUMO

Endothelial insulin resistance represents a causal factor in the pathogenesis of type 2 diabetes (T2D) and vascular disease, thus the need to identify molecular mechanisms underlying defects in endothelial insulin signaling. We previously have shown that a disintegrin and metalloproteinase-17 (ADAM17) is increased while insulin receptor α-subunit (IRα) is decreased in the vasculature of patients with T2D, leading to impaired insulin-induced vasodilation. We have also demonstrated that ADAM17 sheddase activity targets IRα; however, the mechanisms driving endothelial ADAM17 activity in T2D are largely unknown. Herein, we report that externalization of phosphatidylserine (PS) to the outer leaflet of the plasma membrane causes ADAM17-mediated shedding of IRα and blunting of insulin signaling in endothelial cells. Furthermore, we demonstrate that endothelial PS externalization is mediated by the phospholipid scramblase anoctamin-6 (ANO6) and that this process can be stimulated by neuraminidase, a soluble enzyme that cleaves sialic acid residues. Of note, we demonstrate that men and women with T2D display increased levels of neuraminidase activity in plasma, relative to age-matched healthy individuals, and this occurs in conjunction with increased ADAM17 activity and impaired leg blood flow responses to endogenous insulin. Collectively, this work reveals the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.NEW & NOTEWORTHY This work provides the first evidence that neuraminidase, an enzyme increased in the circulation of men and women with type 2 diabetes (T2D), promotes anoctamin-6 (ANO6)-dependent externalization of phosphatidylserine in endothelial cells, which in turn leads to activation of a disintegrin and metalloproteinase-17 (ADAM17) and consequent shedding of the insulin receptor-α from the cell surface. Hence, this work supports that consideration should be given to the neuraminidase-ANO6-ADAM17 axis as a novel potential target for restoring endothelial insulin sensitivity in T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Masculino , Humanos , Feminino , Células Endoteliais/metabolismo , Receptor de Insulina/metabolismo , Fosfatidilserinas/metabolismo , Neuraminidase/metabolismo , Insulina/metabolismo , Desintegrinas , Proteína ADAM17/metabolismo , Anoctaminas/metabolismo
15.
Curr Protoc ; 3(12): e949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38050649

RESUMO

Siglecs (sialic acid-binding, immunoglobulin superfamily, lectins) are a family of transmembrane receptor-type glycan recognition proteins in vertebrates that are primarily expressed on leukocytes and regulate immune responses. Siglecs are involved in several diseases, such as cancer and neurodegenerative diseases. Most Siglecs suppress the activation of leukocytes by recognizing ligands containing sialic acid, a group of acidic sugars commonly found in vertebrate glycans, but rare among microbes. Siglec ligands are critical in the interaction between leukocytes and target cells. The abundance of the Siglec ligand is influenced by both the abundance of the glycoconjugate carrier (glycoprotein or glycolipid) and that of the terminal glycan epitope directly recognized by the Siglec. Therefore, a direct approach to evaluate the expression level of a Siglec ligand on cells of interest is to analyze the binding of recombinant Siglec protein to these cells. In this article, we describe a protocol for semi-quantitatively analyzing the expression level of Siglec ligands via flow cytometry using recombinant Siglec-Fc fusion protein. Support protocols describe how to remove sialic acids from the cell surface with sialidase under mild conditions to demonstrate the sialic acid dependence of Siglec binding, and the preparation of recombinant Siglec-Fc fusion proteins by transient transfection of mammalian cells. © 2023 Wiley Periodicals LLC. Basic Protocol: Quantitative analysis of Siglec ligands on mammalian cells via flow cytometry with recombinant Siglec-Fc fusion protein Support Protocol 1: Sialidase treatment of mammalian cells Support Protocol 2: Preparation of recombinant Siglec-Fc fusion protein via transient transfection of mammalian cells.


Assuntos
Ácido N-Acetilneuramínico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Animais , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ligantes , Citometria de Fluxo , Neuraminidase/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Proteínas Recombinantes de Fusão , Proteínas Recombinantes , Polissacarídeos , Mamíferos/metabolismo
16.
Int J Mol Sci ; 24(24)2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38139095

RESUMO

In the shadow of SARS-CoV-2, influenza seems to be an innocent virus, although new zoonotic influenza viruses evolved by mutations may lead to severe pandemics. According to WHO, there is an urgent need for better antiviral drugs. Blocking viral hemagglutinin with multivalent N-acetylneuraminic acid derivatives is a promising approach to prevent influenza infection. Moreover, dual inhibition of both hemagglutinin and neuraminidase may result in a more powerful effect. Since both viral glycoproteins can bind to neuraminic acid, we have prepared three series of amphiphilic self-assembling 2-thio-neuraminic acid derivatives constituting aggregates in aqueous medium to take advantage of their multivalent effect. One of the series was prepared by the azide-alkyne click reaction, and the other two by the thio-click reaction to yield neuraminic acid derivatives containing lipophilic tails of different sizes and an enzymatically stable thioglycosidic bond. Two of the three bis-octyl derivatives produced proved to be active against influenza viruses, while all three octyl derivatives bound to hemagglutinin and neuraminidase from H1N1 and H3N2 influenza types.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Humanos , Influenza Humana/tratamento farmacológico , Ácido N-Acetilneuramínico/farmacologia , Ácido N-Acetilneuramínico/metabolismo , Hemaglutininas/farmacologia , Neuraminidase/metabolismo , Vírus da Influenza A Subtipo H3N2 , Ácidos Neuramínicos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo
17.
Cell Mol Biol (Noisy-le-grand) ; 69(10): 94-99, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37953579

RESUMO

Newcastle disease is a highly contagious viral infection primarily affecting poultry, leading to significant economic losses worldwide due to its high morbidity and mortality rates. Given the severity of the disease and its impact on the poultry industry, there is an urgent need for a preventative approach to tackle this issue. Developing an efficient and effective vaccine is a valuable step toward reducing the burden of this virus. Consequently, investing in preventive measures, such as vaccination programs, is a top priority to mitigate the economic losses associated with Newcastle disease and protect the livelihoods of those relying on the poultry industry. Despite many vaccines against this viral disease, it still infects many wild and domestic birds worldwide. In this work, chimeric proteins, composed of the recombinant B subunit of Enterotoxigenic E. coli with one or two HN (Hemagglutinin-neuraminidase) subunits of NDV (LHN and LHN2, respectively), expressed using E.coli host. In-silico, in-vitro, and In-vivo procedures were performed to evaluate the immunogenicity of these proteins. The sera from immunized mice were analyzed using Western Blotting and ELISA. The LHN2 protein with an extra HN subunit elicited a higher antibody titer than the LHN protein (P<0.05). Both products could effectively elicit an immune response against NDV and can be considered a component of Newcastle disease vaccine candidates.


Assuntos
Doença de Newcastle , Vacinas , Vacinas Virais , Animais , Camundongos , Vírus da Doença de Newcastle/genética , Vírus da Doença de Newcastle/metabolismo , Doença de Newcastle/prevenção & controle , Hemaglutininas/metabolismo , Neuraminidase/metabolismo , Imunidade Humoral , Galinhas , Escherichia coli/genética , Temperatura Alta , Vacinas/metabolismo , Modelos Animais , Vacinas Virais/metabolismo , Anticorpos Antivirais/metabolismo
18.
Front Immunol ; 14: 1259237, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920471

RESUMO

Introduction: Glucose Regulated Proteins/Binding protein (GRP78/Bip), a representative molecular chaperone, effectively influences and actively participates in the replication processes of many viruses. Little is known, however, about the functional involvement of GRP78 in the replication of Newcastle disease virus (NDV) and the underlying mechanisms. Methods: The method of this study are to establish protein interactomes between host cell proteins and the NDV Hemagglutinin-neuraminidase (HN) protein, and to systematically investigate the regulatory role of the GRP78-HN protein interaction during the NDV replication cycle. Results: Our study revealed that GRP78 is upregulated during NDV infection, and its direct interaction with HN is mediated by the N-terminal 326 amino acid region. Knockdown of GRP78 by small interfering RNAs (siRNAs) significantly suppressed NDV infection and replication. Conversely, overexpression of GRP78 resulted in a significant increase in NDV replication, demonstrating its role as a positive regulator in the NDV replication cycle. We further showed that the direct interaction between GRP78 and HN protein enhanced the attachment of NDV to cells, and masking of GRP78 expressed on the cell surface with specific polyclonal antibodies (pAbs) inhibited NDV attachment and replication. Discussion: These findings highlight the essential role of GRP78 in the adsorption stage during the NDV infection cycle, and, importantly, identify the critical domain required for GRP78-HN interaction, providing novel insights into the molecular mechanisms involved in NDV replication and infection.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Vírus da Doença de Newcastle , Animais , Neuraminidase/metabolismo , Hemaglutininas , Ligação Viral , Proteína HN/genética , Proteína HN/metabolismo , Proteína HN/farmacologia , Proteínas Virais/farmacologia
19.
Zhonghua Yi Xue Za Zhi ; 103(41): 3287-3293, 2023 Nov 07.
Artigo em Chinês | MEDLINE | ID: mdl-37926573

RESUMO

Objective: To investigate the expression of neuraminidase-1 (NEU1) in Ewing sarcoma (ES) tissue and its effect on the proliferation and migration of ES cells. Methods: To obtain datasets of ES from the National Center for Biotechnology Information's High-Throughput Gene Expression Omnibus (GEO) for the analysis of NEU1 expression in ES; to acquire ES patient dataset from the International Cancer Genome Consortium (ICGC) database and apply Kaplan-Meier survival analysis to investigate the relationship between NEU1 and the prognosis of ES patients; adopting both univariate and multivariate Cox regression analysis to determine whether NEU1 is a prognostic factor for ES; adopting the Kyoto Encyclopedia of Genes and Genomes (KEGG) annotation to analyze the potential mechanism of NEU1 in regulating the malignant biological behavior of ES; adopting the real-time fluorescence quantitative polynucleotide chain reaction (RT-qPCR) to verify the expression of NEU1 in the human bone marrow mesenchymal stem cells (hBMSC) and the ES cell line RD-ES; adopting the transfection technology to knock down the expression of NEU1 in ES cell lines and divide them into two groups: shRNA-NEU1 and shRNA-NC to explore the effects of altered NEU1 expression on ES malignant behavior; adopting the cell counting kit (CCK-8) and cell clone formation experiment to detect the proliferation ability of two groups of cells; adopting the scratch healing experiment to test the cell migration ability of the two groups. Results: We retrieved and analyzed data from the GEO database, including GSE17674 (44 ES tissues and 18 normal tissues) and GSE17679 (87 ES tissues and 18 normal tissues), and found that NEU1 expression was significantly higher in ES tissues compared to normal control tissues (P<0.001). The complete gene expression and clinical information of 56 ES patients obtained from the ICGC database revealed that the ES patients with high NEU1 expression (n=28) had a significantly lower overall survival rates at different time points compared to those with low NEU1 expression (n=28) (HR=2.830, 95%CI:1.324-6.051, P=0.005). Univariate analysis indicated that NEU1 could impact ES patient prognosis (HR=1.049, 95%CI: 1.008-1.092, P=0.019), and multivariate analysis further suggested that NEU1 could serve as a risk factor for ES prognosis (HR=1.087, 95%CI: 1.028-1.148, P=0.003). KEGG results show that MAPK signaling pathway and cell adhesion molecule signaling pathway were potential mechanisms regulating the malignant process of ES. The RT-qPCR results showed that the expression level of NEU1 in the RD-ES cell line is significantly higher than that in the control cell hBMSC (2 184.23±527.32 vs 1.00±0.08, P<0.001). The CCK-8 experiment results show that the proliferation of RD-ES cells in the NEU1 knockdown group was lower than that in the control group at 24, 48, and 72 hours (0.494±0.126 vs 0.696±0.118, 0.657±0.096 vs 1.142±0.182, 1.053±0.064 vs 1.980±0.146, all P<0.001). The results of single cell clone formation experiment show that the number of colony formation in the low expression NEU1 group was significantly lower than that in the control group (184.2±123.9 vs 362.8±78.0, P=0.021). The cell scratch healing experiment finds that the average scratch distance of the NEU1 knockdown group was significantly lower than that of the control group (19.6%±5.7% vs 56.0%±7.6%, P<0.001). Conclusion: NEU1 may be a prognostic factor in ES, and its abnormal expression in ES can affect the proliferation and migration ability of the ES cells, leading to poor prognosis in ES patients.


Assuntos
Sarcoma de Ewing , Humanos , Proliferação de Células , Neuraminidase/genética , Neuraminidase/metabolismo , Prognóstico , RNA Interferente Pequeno , Sarcoma de Ewing/genética , Sarcoma de Ewing/patologia
20.
Sci Transl Med ; 15(724): eabp9599, 2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38019934

RESUMO

Epithelial cells are covered in carbohydrates (glycans). This glycan coat or "glycocalyx" interfaces directly with microbes, providing a protective barrier against potential pathogens. Bacterial vaginosis (BV) is a condition associated with adverse health outcomes in which bacteria reside in direct proximity to the vaginal epithelium. Some of these bacteria, including Gardnerella, produce glycosyl hydrolase enzymes. However, glycans of the human vaginal epithelial surface have not been studied in detail. Here, we elucidate key characteristics of the "normal" vaginal epithelial glycan landscape and analyze the impact of resident microbes on the surface glycocalyx. In human BV, glycocalyx staining was visibly diminished in electron micrographs compared to controls. Biochemical and mass spectrometric analysis showed that, compared to normal vaginal epithelial cells, BV cells were depleted of sialylated N- and O-glycans, with underlying galactose residues exposed on the surface. Treatment of primary epithelial cells from BV-negative women with recombinant Gardnerella sialidases generated BV-like glycan phenotypes. Exposure of cultured VK2 vaginal epithelial cells to recombinant Gardnerella sialidase led to desialylation of glycans and induction of pathways regulating cell death, differentiation, and inflammatory responses. These data provide evidence that vaginal epithelial cells exhibit an altered glycan landscape in BV and suggest that BV-associated glycosidic enzymes may lead to changes in epithelial gene transcription that promote cell turnover and regulate responses toward the resident microbiome.


Assuntos
Gardnerella vaginalis , Vaginose Bacteriana , Feminino , Humanos , Gardnerella vaginalis/genética , Gardnerella vaginalis/metabolismo , Vagina , Vaginose Bacteriana/genética , Vaginose Bacteriana/microbiologia , Bactérias/metabolismo , Polissacarídeos , Neuraminidase/genética , Neuraminidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...